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Chapter 1 Introduction

Estimation is a ubiquitous process in our daily life and exists even without our attention in

every aspect of human activities. No matter in which activity, we normally do not act blindly

but act reasonably according to our conscious estimation of things and situations involved in

the activity. Take some routine and ordinary behaviours as examples. Walking is a common

activity, during which we unceasingly observe environment objects around us and estimate

the spatial relationship between our body and them so that we can dynamically determine a

navigable (and often somehow optimal) path for our potential walking movements. Eating is

also an indispensable activity, during which we dynamically estimate the spatial relationship

between the food and our mouth and adjust our arm and hand movement accordingly, until

the food is desirably put into our mouth.

By analogue to humans, any autonomous or partially-autonomous system that interacts

with the environment should possess estimation ability according to its operation require-

ments. Intuitively speaking, estimation aims at revealing or deriving the truth of something

essential to a system’s operation.

1.1 State

The intuitive words “something essential” in above description can be called more formally

as state which can potentially be of unlimited kinds. A state can be the temperature, heart

rate, pulse strength, and even the overall healthy status of a patient. A state can be the

trading volume of the capital market of a town, a city, a country, or the world. A state can

be the structure of relationships among people in an enterprise or a society. A state can be

some aspect of human feeling towards an object or an event.

In the context of intelligent systems, for an indoor mobile robot system or an outdoor

intelligent vehicle system, a state can be the system’s pose in a two-dimensional or three-

dimensional global reference [1, 2, 3, 4, 5, 6]. A state can be the locations of the system’s



surrounding objects such as lane marks [7, 8] and pedestrians [9, 10]. A state can be the spa-

tial representation of both stationary and dynamic objects in the system’s local environment

[11, 12, 13, 14]. From the distributed perspective of an individual system among multiple

cooperative systems, a state can be the system’s pose concatenated with other systems’ poses

in a global reference [15, 16, 17].

Figure 1.1: Vehicle pose in a two-dimensional global reference

Besides above examples, a state can be something essential to systems operating in a

wide range of engineering activities, such as marine and submarine vehicles [18] [19], special

multiped robots [20] [21], and drones and unmanned aerial vehicles [22].

Figure 1.2: Engineering activities involving state estimation: (a) marine; (b) land; (c) aerial

What a state can be depends on concrete practices. A state can potentially be of un-

limited kinds and serve as a general concept in extremely broad sense. However, we refrain

from abusing the potential generality of the concept state and hence refrain from entangling

this book with too many topics. For example, we refrain from entangling this book with

machine learning based pattern recognition, though a pattern such as rain distribution [23]

may somehow be regarded as a state and pattern recognition may somehow be regarded as

state estimation.



1.4 Recursive estimation

After introduction of the important concepts state, system model, measurement and

measurement model, we can clarify the concept estimation: For a system, estimation

is the process of inferring the state from measurements, with the help of a given system

model that describes state evolution and a given measurement model that describes state-

measurement causal relationship.

Figure 1.5: Methodology of estimation

In many applications especially real-time applications, the state evolves dynamically over

time and its corresponding measurements are also obtained dynamically. Whenever a new

measurement is available, instead of using all historical measurements to estimate current

state from scratch, we can fairly take advantage of last state estimate which contains histori-

cal information implicitly and fuse it only with the new measurement to obtain current state

estimate. This methodology, called recursive estimation, can render the estimation pro-

cess much more efficient but essentially no less effective than estimating the state from scratch

will all historical measurements. The basic spirit of recursive estimation can be illustrated by

a dynamic Bayesian network (DBN) [24] as in Figure 1.6. The general mathematical for-

malism of recursive estimation from the dynamic Bayesian network perspective is postponed

to later chapters.

In this book, we gradually clarify some fundamental (and hence essential) knowledge of

recursive estimation: In Chapter 2, we introduce the Kalman filter which is probably the

most popular method of recursive estimation and explain the basic spirit and utilities of

recursive estimation. In Chapter 3, we demonstrate the importance of consistent system

modelling to recursive estimation and introduce how to handle non-deterministic systems

via the interacting multiple model method. In Chapter 4, we explain the motivation of



Figure 1.6: Recursive estimation from the dynamic Bayesian network (DBN) perspective

handling nonlinear system and measurement models in recursive estimation and present two

well-known methods for such purpose, namely the extended Kalman filter and the unscented

Kalman filter. In Chapter 5, we describe the general mathematical formalism of Bayesian

inference for recursive estimation and introduce the particle filter which is a representative

realization of such inference via the sampling (or Monte Carlo) strategy. In Chapter 6, we

demonstrate the influence of data correlation to recursive estimation and describe how to

handle data correlation especially unknown data correlation in recursive estimation.



Chapter 2 Basic Spirit And Utilities

2.2 Kalman filter

The Kalman filter, which is put forward in a milestone article [25] more than half a cen-

tury ago, is probably the most popular way of instantiating the methodology of recursive

estimation. It has been broadly applied in engineering activities [26, 27].

The Kalman filter consists of two essential steps: prediction and update. The prediction

step propagates the estimate from time t − 1 to time t, namely, to predict {xt, Σt} from

{x̂t−1, Σ̂t−1} according to the system model. To avoid notation confusion, we denote the

predicted estimate with a bar on variable, as {x̄t, Σ̄t}. The predicted estimate is also called

the a priori estimate.

The update step updates the a priori estimate {x̄t, Σ̄t} with the new measurement zt to

obtain the a posteriori estimate {x̂t, Σ̂t} which is the final estimate at current time t. The

update step embodies an important spirit of data fusion, which will be explained later.

2.2.1 Linear-Gaussian modelling

The original Kalman filter relies on the linear-Gaussian assumption, namely, the system

model and the measurement model are formalized as linear relationships (2.3) and (2.4)

respectively:

xt = Axt−1 + But + εt (2.3)

zt = Hxt + γt (2.4)

where all involved random variables follow the Gaussian or normal distribution assumption.

In other words, xt ∼ N(x̂t, Σ̂t), xt−1 ∼ N(x̂t−1, Σ̂t−1), ut ∼ N(ût,Σu), εt ∼ N(0,Σε), and

γt ∼ N(0,Σγ).

Here, û with hat denotes monitored control input, whereas u without hat denotes real

control input which is used only in theoretical sense in system modelling. In field applications,



it is always the monitored control input û that is actually used in concrete procedures of

recursive estimation and is used somehow as time-variant parameters of the system model.

Therefore throughout this book, without causing confusion, we abuse the notation u to

denote both real control input that is used theoretically in system modelling and monitored

control input that is used somehow as system model parameters in concrete procedures of

recursive estimation.

2.2.2 Prediction-update formalism

The prediction and update steps of the Kalman filter are realized as (2.5) and (2.6) respec-

tively:

Prediction: xt (a priori) ∼ N(x̄t, Σ̄t)

x̄t = Ax̂t−1 + But (2.5)

Σ̄t = AΣ̂t−1A
T + BΣuBT + Σε

Update: xt (a posteriori) ∼ N(x̂t, Σ̂t)

x̂t = x̄t + K(zt −Hx̄t) (2.6)

Σ̂t = (I−KH)Σ̄t

where K = Σ̄tH
T (HΣ̄tH

T + Σz)
−1

In (2.5), ut actually denotes monitored control input in practices. The formalism (2.5) and

(2.6) is a commonly-adopted version of the original Kalman filter, whereas other formalism

versions also exist. Reasoning of (2.5) is straightforward, whereas a complete understanding

of (2.6) necessitates a bit more complicated derivation. Based on the Gaussian distribution

assumption, (2.6) can be derived strictly via Bayesian inference. However, we would rather

explain (2.6) from data fusion perspective in next section to intuitively highlight the essence

of this famous recursive estimation method.

2.3 Data fusion perspective

On data fusion, we would like to begin with a daily-life example. Suppose we have two

thermometers of the same quality to measure our room temperature. One thermometer

indicates a value of 23 degrees centigrade, whereas the other indicates 27 degrees centigrade.



Our question is: what is the room temperature? or more specifically, what would be the

most-likely room temperature?

If we had only one thermometer, then we would simply take its indicated value as the

room temperature value. However, we have two thermometers which indicate different tem-

perature values. What would be a more reasonable answer than each of the two indicated

temperature values? Apparently, we should neither trust the first thermometer only nor

trust the second thermometer only; instead, we may form our answer to the question by

incorporating information conveyed by both thermometers. Since the two thermometers are

of the same quality, a natural intuition is to take an average of the two indicated temperature

values and we have our answer (23 + 27)/2 = 25 degrees centigrade. In other words, we fuse

the two indicated temperature values by averaging them.

Now suppose the thermometers are of different qualities; the first thermometer is better

and its error level is only a third of the second thermometer’s error level. In this case, what

would be the most-likely room temperature?

Since the two thermometers are of different qualities, we had better give the better ther-

mometer a larger confidence weight and give the worse thermometer a smaller confidence

weight while fusing their indicated temperature values. The first thermometer’s error level is

only a third of the second thermometer’s error level; in other words, the first thermometer’s

quality level is three times the second thermometer’s quality level. By intuition, we may give

a confidence weight of three to the first thermometer and a confidence weight of one to the

second thermometer. Thereafter we take a weighted average of the two indicated temperature

values and our answer to the question is (23 ∗ 3 + 27 ∗ 1)/(3 + 1) = 24 degrees centigrade.

Above practice of taking a weighted average has its probability theory foundation. We

can treat the two thermometers’ indicated temperature values as two independent random

variables {x1, σ2
1} and {x2, σ2

2} for the same event (namely the room temperature in this

example) and σ2
1 = σ2

2/3. Let the fusion weights assigned to the two thermometers are k1

and k2 respectively and k1 + k2 = 1. We follow the Gaussian distribution assumption and



aims at finding the optimal weights in the maximum likelihood sense [28]:

p(x1, x2|k1x1 + k2x2)

= p(x1|k1x1 + k2x2)p(x2|k1x1 + k2x2)
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1
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In above derivation, Cauchy’s inequality [29] is used and the equality condition holds if and

only if
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/σ2 ⇒
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σ2

2
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= 3

Therefore, when the weight assigned to the first thermometer is three times the weight

assigned to the second thermometer, the weighted average of the two thermometers’ indicated

temperature values is of the maximum likelihood.

2.3.1 Optimal weighted average

From the simple example of fusing two thermometers’ indicated temperature values, we

extend to fusion of two generic source estimates {x1, Σ1} and {x2, Σ2} of a state x. Their

covariance matrices Σ1 and Σ2 reflect their uncertainty respectively, and accordingly their

covariance inverses Σ−1
1 and Σ−1

2 can be used to reflect their quality respectively. The smaller

the estimate covariance is, the higher the estimate quality is. Such quality is also known as

information and such covariance inverses are called information matrices.



The weighted average of the two estimates {x1, Σ1} and {x2, Σ2} can be formulated as:

Σ̂−1 = Σ−1
1 + Σ−1

2 (2.7)

x̂ = Σ̂(Σ−1
1 x1 + Σ−1

2 x2)

The fusion formula (2.7) is intuitively reasonable. In fact, its optimality among all possible

weighted averages can also be proved — The weighted averages mentioned here actually mean

linear weighted averages, whereas the concept weighted average itself can mean a nonlinear

weighted average as well from pure mathematical perspective. However, in field applications,

a nonlinear weighted average of two source estimates is usually of no practical meaning. For

example, what would be the meaning of the square or root of a generic state estimate vector?

So we neglect consideration of nonlinear weighted averages in following analysis.

Proof. Suppose the fused estimate x̂ is a weighted average of x1 and x2 as

x̂ = Cx1 + (I−C)x2

and hence the covariance of x̂ is

Σ̂ = CΣ1C
T + (I−C)Σ2(I−C)T

The covariance Σ̂ had better be as less as possible, which implies the minimality of estimate

uncertainty. So the optimal weight Copt can be determined by solving the optimization

problem (2.8):

Copt = arg min
C

Σ̂(C) = arg min
C

(CΣ1C
T + (I−C)Σ2(I−C)T ) (2.8)

We may neglect mathematical ambiguity in above definition of the objective function, because

it has no essential influence on deriving the optimal weight. Consider differentiation of Σ̂(C)

with respect to C:

∆Σ̂(C) = 2CΣ1∆CT + 2(I−C)Σ2(−∆C)T

= 2[C(Σ1 + Σ2)−Σ2]∆CT



The variation ∆C can be arbitrary; by the first optimality condition, we have

Copt(Σ1 + Σ2)−Σ2 = 0

so

Copt = Σ2(Σ1 + Σ2)−1 = (Σ−1
1 + Σ−1

2 )−1Σ−1
1

I−Copt = Σ1(Σ1 + Σ2)−1 = (Σ−1
1 + Σ−1

2 )−1Σ−1
2

Σ̂ = CoptΣ1C
T
opt + (I−Copt)Σ2(I−Copt)

T = (Σ−1
1 + Σ−1

2 )−1

x̂ = Coptx1 + (I−Copt)x2

= (Σ−1
1 + Σ−1

2 )−1Σ−1
1 x1 + (Σ−1

1 + Σ−1
2 )−1Σ−1

2 x2

= Σ̂(Σ−1
1 x1 + Σ−1

2 x2)

which is exactly the fusion formula (2.7).

In the update step of the Kalman filter, we can treat the predicted state estimate {x̄t, Σ̄t}
as one source estimate and the new measurement {zt, Σz} as another source estimate. What

the update step of the Kalman filter does essentially is to fuse these two source estimates

according to above weighted averaging strategy, as illustrated in Figure 2.2.

In field applications, the predicted state estimate {x̄t, Σ̄t} is always a complete state

estimate, yet the measurement {zt, Σz} may be a partial measurement, or in other words,

the measurement matrix H may be rank deficient. Consequently, we cannot always fuse {x̄t,
Σ̄t} and {zt, Σz} via (2.7) directly; instead, we can resort to (2.6) to fuse {x̄t, Σ̄t} and {zt,
Σz}, regardless of whether {zt, Σz} is a complete measurement or partial measurement.

Although (2.6) seems to be more general than (2.7) in practices, (2.6) can actually be

derived from (2.7). This is why we treat the update step of the Kalman filter essentially as

weighted averaging of the predicted state estimate {x̄t, Σ̄t} and the new measurement {zt,
Σz}. The derivation of (2.6) from (2.7) will be detailed in the following section.

2.3.2 Derivation of the update formalism of the Kalman filter

Suppose there exist a complete source estimate {x1, Σ1} and a partial source estimate {z =

Hx2, Σz}. We augment z to a complete source estimate
[
z z0

]T
where z0 is set arbitrary



Figure 2.2: Kalman filter update: weighted average of the predicted estimate and the mea-
surement

and its covariance is set as Σz0 =∞.[
z

z0

]
=

[
H

H0

]
x2 where

[
H

H0

]
is an invertible matrix

Therefore

x2 =

[
H

H0

]−1 [
z

z0

]

Σ2 =

[
H

H0

]−1 [
Σz 0

0 ∞

][
H

H0

]−T

and

Σ−1
2 =

[
H

H0

]T [
Σ−1

z 0

0 0

][
H

H0

]
= HTΣ−1

z H



Fuse {x1, Σ1} and {x2, Σ2} via (2.7) and we have

Σ = (Σ−1
1 + Σ−1

2 )−1 = (Σ−1
1 + HTΣ−1

z H)−1

= (I + Σ1H
TΣ−1

z H)−1Σ1 = [
∞∑
0

(−Σ1H
TΣ−1

z H)i]Σ1

= {I−Σ1H
TΣ−1

z [
∞∑
0

(−HΣ1H
TΣ−1

z )i]H}Σ1

= {I−Σ1H
TΣ−1

z (I + HΣ1H
TΣ−1

z )−1H}Σ1

= {I−Σ1H
T (Σz + HΣ1H

T )−1H}Σ1

= (I−KH)Σ1 where K = Σ1H
T (Σz + HΣ1H

T )−1

It is worth noting that the infinite matrix series expansion in above derivation holds true

only when the eigenvalues of relevant matrices are within the unit circle in the complex

plane. But this does not influence the equality Σ = (I−KH)Σ1 which is equivalent to the

equality of two finite-order polynomials. Since the equality holds true for infinite choices of

matrix elements involved, the equality must always hold true. Thus above derivation result

Σ = (I−KH)Σ1 always holds true. By (2.7) we also have

x = Σ(Σ−1
1 x1 + Σ−1

2 x2) = ΣΣ−1
1 x1 + ΣΣ−1

2 x2

= ΣΣ−1
1 x1 + (I−ΣΣ−1

1 )x2

= (I−KH)x1 + KHx2

= (I−KH)x1 + KH

[
H

H0

]−1 [
z

z0

]

= (I−KH)x1 + K
[
I 0

] [ z

z0

]
= (I−KH)x1 + Kz

= x1 + K(z−Hx1)

If we substitute {x̄t, Σ̄t} for {x1, Σ1} and {zt, Σz} for {z, Σz} in above derivation, we will

have the update formalism (2.6).



2.4 Application

The principles of how the Kalman filter instantiates the general recursive estimation method-

ology (Figure 1.6 and Figure 2.1) based on the linear-Gaussian assumption have been intro-

duced in previous sections. In this section, we demonstrate a concrete application of the

Kalman filter in the context of intelligent vehicles, namely realization of vehicle localization

by fusing commonly-available on-vehicle motion data and Bei-Dou GPS measurements via

the Kalman filter. Based on this application example, we clarify basic utilities of recursive

estimation in engineering activities.

2.4.1 Application description

Suppose a vehicle is equipped with motion sensors that monitor the vehicle yawrate and

velocity regularly. These motion data are used in the system model that describes how the

vehicle state i.e. its pose x = (x, y, θ) evolves. Here, the vehicle system model is formalized

as a two-dimensional bicycle kinematics model — In field applications, a vehicle can hardly

navigate on an ideal two-dimensional plane due to inherent unevenness of the earth surface

at both large and small scales. However, we can fairly approximate the earth surface by a

collection of two-dimensional plane patches in region-wise way so that during a moderate

time interval the vehicle can be fairly assumed to navigate on a two-dimensional plane.

Besides, assuming that the vehicle navigates on a two-dimensional plane has no influence

on demonstration of basic utilities of recursive estimation — The two-dimensional bicycle

kinematics model can be approximated in discrete form as (2.9) .
xt = xt−1 + vt∆Tcos(θt−1 + wt∆T/2)

yt = yt−1 + vt∆Tsin(θt−1 + wt∆T/2)

θt = θt−1 + wt∆T

(2.9)

where ∆T denotes the system period; v and w denote the vehicle velocity and yawrate

respectively.

Proof. Following physical laws we have
dx/dt = vcosθ

dy/dt = vsinθ

dθ/dt = w

(2.10)



From the third equation of (2.10) we have

θt = θt−1 +

∫ t∆T

(t−1)∆T

wdt ≈ θt−1 + wt∆T

From the first equation of (2.10) we have

xt = xt−1 +

∫ t∆T

(t−1)∆T

vcosθdt ≈ xt−1 + vt

∫ t∆T

(t−1)∆T

cosθdθ
dt

dθ

= xt−1 + vt

∫ t∆T

(t−1)∆T

d(sinθ)

w
≈ xt−1 +

vt
wt

(sinθt − sinθt−1)

= xt−1 + 2
vt
wt
sin(

θt − θt−1

2
)cos(

θt + θt−1

2
)

≈ xt−1 + vt(
θt − θt−1

wt
)cos(

θt + θt−1

2
) ≈ xt−1 + vt∆Tcos(

θt + θt−1

2
)

≈ xt−1 + vt∆Tcos(θt−1 + wt∆T/2)

From the second equation of (2.10) we have

yt = yt−1 +

∫ t∆T

(t−1)∆T

vsinθdt ≈ yt−1 + vt

∫ t∆T

(t−1)∆T

sinθdθ
dt

dθ

= yt−1 + vt

∫ t∆T

(t−1)∆T

d(−cosθ)
w

≈ yt−1 +
vt
wt

(cosθt−1 − cosθt)

= yt−1 + 2
vt
wt
sin(

θt − θt−1

2
)sin(

θt + θt−1

2
)

≈ yt−1 + vt(
θt − θt−1

wt
)sin(

θt + θt−1

2
) ≈ yt−1 + vt∆Tsin(

θt + θt−1

2
)

≈ yt−1 + vt∆Tsin(θt−1 + wt∆T/2)

Derivation of the two-dimensional bicycle kinematics model (2.9) is done.

The vehicle velocity v and yawrate w are monitored by on-vehicle motion sensors. The

monitored velocity and yawrate values are denoted as v̂ and ŵ respectively. Their errors ∆v

and ∆w follow the Gaussian distribution assumption, namely ∆v ∼ N(0,Σv) and ∆w ∼
N(0,Σw).

Suppose the vehicle is also equipped with a Bei-Dou GPS module that measures the

vehicle position (x, y) — The Bei-Dou GPS system is familiar to public nowadays and here

we assume the availability of a Bei-Dou GPS module simply to facilitate understanding of



this application example. On the other hand, the basic principles reflected by this application

example are general to applications with other configurations. We can fairly replace the Bei-

Dou GPS module by a USA GPS module or by some ad hoc landmark based positioning

module [1] — The Bei-Dou GPS measurement is denoted as z and the measurement model

is formalized as (2.11):

zt = Hxt + γt (2.11)

H =

[
1 0 0

0 1 0

]
where γ denotes the measurement error which follows the Gaussian distribution assumption

γ ∼ N(0,Σγ), namely a Gaussian distribution with zero mean and covariance Σγ. It is worth

noting that the measurement model (2.11) is a partial measurement model: there is no direct

measurement of the orientation θ which is to be revealed indirectly via proper estimation

especially recursive estimation.

Vehicle localization is a recursive process of inferring the vehicle state x = (x, y, θ) from

Bei-Dou GPS measurements of the vehicle position (x, y), with the help of the system model

(2.9) and the measurement model (2.11). This process of recursive estimation is illustrated

in Figure 2.3.

Figure 2.3: Kalman filter application example: vehicle localization



2.4.2 One-dimensional simplification of vehicle localization

2.4.3 Two-dimensional vehicle localization

The system model (2.9) is nonlinear with respect to the vehicle orientation θ and the vehicle

yawrate w and does not satisfy the linear form of the system model (2.3). In order to apply

the Kalman filter (2.5) and (2.6), we linearize the system model (2.9) locally about θ and w

to transform it into an approximated-linear form. Such local linearization based variant

of the Kalman filter is called extended Kalman filter (EKF) which will be detailed in

Chapter 4. In the presented application example, the measurement model is already linear

and hence exempt from local linearization. The system model after local linearization about

θ and w is given as (2.16):xtyt
θt

 ≈
x̄tȳt
θ̄t

 + A(xt−1,ut)

∆xt−1

∆yt−1

∆θt−1

 + B(xt−1,ut)

[
∆vt

∆wt

]
(2.16)

where ut = (vt, wt) and 
x̄t = xt−1 + vt∆Tcos(θt−1 + wt∆T/2)

ȳt = yt−1 + vt∆Tsin(θt−1 + wt∆T/2)

θ̄t = θt−1 + wt∆T

A(xt−1,ut) =

1 0 −vt∆Tsin(θt−1 + wt∆T/2)

0 1 vt∆Tcos(θt−1 + wt∆T/2)

0 0 1



B(xt−1,ut) =

∆Tcos(θt−1 + wt∆T/2) −vt∆T 2sin(θt−1 + wt∆T/2)/2

∆Tsin(θt−1 + wt∆T/2) vt∆T
2cos(θt−1 + wt∆T/2)/2

0 ∆T


The matrices A(xt−1,ut) and B(xt−1,ut) are the Jacobian matrices of the vehicle state

evolution function reflected by (2.9) with respect to the state xt−1 and the control input ut

respectively.

With the locally-linearized system model (2.16) and the linear measurement model (2.11),

the prediction and update steps (2.17) and (2.18) of the extended Kalman filter can be

performed. It is worth noting that model local linearization errors always exist and may be

treated simply as model errors or in other ways. Since existence of model local linearization



errors has no essential influence on demonstrating the performance of the extended Kalman

filter, model local linearization errors are neglected here.

Prediction:x̄tȳt
θ̄t

 =

x̂t−1 + v̂t∆Tcos(θ̂t−1 + ŵt∆T/2)

ŷt−1 + v̂t∆Tsin(θ̂t−1 + ŵt∆T/2)

θ̂t−1 + ŵt∆T

 (2.17)

Σ̄t = A(x̂t−1, ût)Σ̂t−1A(x̂t−1, ût)
T + B(x̂t−1, ût)

[
Σv 0

0 Σw

]
B(x̂t−1, ût)

T

Update:

K = Σ̄tH
T (HΣ̄tH

T + Σγ)
−1 (2.18)

x̂t =

x̄tȳt
θ̄t

 + K(zt −H

x̄tȳt
θ̄t

)

Σ̂t = (I−KH)Σ̄t

Simulation

Synthetic data are generated according to the system model (2.9) and the measurement

model (2.11). The performance of the extended Kalman filter based two-dimensional vehicle

localization is evaluated based on the generated synthetic data.

In the simulation, set ∆T = 1(s), Σv = 0.62(m2/s2), Σw = 0.022(rad2/s2), and Σγ =

diag(152, 152)(m2). Set the ground-truth x0 = [0(m), 0(m),−π/2(rad)]T , vt = 15(m/s), and

wt = 0.04(rad/s). Monitored speed and yawrate values are synthesized according to v̂t ∼
N(vt,Σv) and ŵt ∼ N(wt,Σw) respectively. Vehicle position measurements are synthesized

according to zt ∼ N(Hxt,Σγ).

The extended Kalman filter (2.17) and (2.18) is applied to estimate the vehicle state i.e.

the vehicle pose (x, y, θ) on the given two-dimensional plane. The result of one simulation trial

is demonstrated in Figure 2.6, where the black dashed line represents the vehicle trajectory

ground-truth, the the red line represents the estimated vehicle trajectory, and the blue crosses

represent positioning module measurements. The estimated vehicle trajectory is noticeably

better than raw position measurements in the sense that the former is noticeably smoother

than the latter.
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Figure 2.6: two-dimensional vehicle localization: estimate and measurement errors

The position estimate error
√

(x̂t − xtruth)2 + (ŷt − ytruth)2 and the position measurement

error
√

(zx,t − xtruth)2 + (zy,t − ytruth)2 are computed and compared. The average result of 50

Monte Carlo simulation trials based on synthetic data is demonstrated in Figure 2.7, where

the horizontal axis represents time and the vertical axis represents estimate and measurement

errors. We can see that estimate errors are considerably smaller than measurement errors.
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Figure 2.7: Two-dimensional vehicle position estimate and measurement errors for 50 Monte
Carlo trials

The vehicle orientation estimate errors are also computed for the same 50 Monte Carlo tri-
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Figure 2.8: Two-dimensional vehicle orientation estimate errors for 50 Monte Carlo trials

als and the average result is demonstrated in Figure 2.8, where the horizontal axis represents

time and the vertical axis represents orientation estimate errors. There are only orientation

estimate errors without orientation measurement errors, because there is no direct measure-

ment of the vehicle orientation.

As shown in Figure 2.8, the vehicle orientation estimate errors vary around 0.05 rad i.e.

only a half of the tiny angle formed by two neighbouring tick marks on a clock. Here, we

have no intention to analyse the quality of vehicle orientation estimates in an isolated way,

because such estimate quality may change if vehicle configurations are different. The point

to highlight here is another utility of recursive estimation, namely to reveal state information

that is not directly measurable and hence obtain a complete state estimate.

It is worth noting that whether the complete state of a system is estimable depends on

the system observability which is related to the system model as well as the measurement

model. Readers can refer to control theory literature such as [30] for details on this issue.

2.5 Summary

In this chapter, we have introduced the general recursive estimation methodology with math-

ematical notations and have presented a popular recursive estimation method namely the

Kalman filter. The spirit of the Kalman filter can be explained from data fusion perspective.

We have demonstrated a concrete application example of the Kalman filter, namely ve-

hicle localization which belongs to mobile robotics [31] and is a core function for intelligent



vehicles. The demonstration is based on simulation that is abstracted from field applications.

Compared with demonstration directly by field applications, demonstration by simulation has

two advantages: First, simulation enables us to focus on the field application part that is

most related to recursive estimation and hence highlight the essential role of recursive estima-

tion in field applications. Second, simulation is exempt from irrelevant ad hoc factors in field

applications and enables different methods to be studied together under exactly the same

conditions, which is especially desirable for a comparative study. Therefore, demonstration

by simulation is commonly adopted throughout this book.

Recursive estimation has two basic utilities: First, to reveal state information that is not

directly measurable and hence obtain a complete state estimate. Second, to provide more

precise state estimates than raw measurements. In one word, these two basic utilities are

to know completely and to know better respectively. In fact, they are also basic utilities of

estimation in more general sense.
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